Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps

نویسندگان

  • Tânia Sousa
  • Rita Branco
  • Ana Paula Piedade
  • Paula V. Morais
  • Alexandre Poulain
چکیده

Ochrobactrum tritici SCII24T is a highly As-resistant bacterium, with two previously described arsenic resistance operons, ars1 and ars2. Among a large number of genes, these operons contain the arsB and Acr3 genes that encode the arsenite efflux pumps responsible for arsenic resistance. Exploring the genome of O. tritici SCII24T, an additional putative operon (ars3) was identified and revealed the presence of the Acr3_2 gene that encodes for an arsenite efflux protein but which came to prove to not be required for full As resistance. The genes encoding for arsenite efflux pumps, identified in this strain, were inactivated to develop microbial accumulators of arsenic as new tools for bioremediation. Six different mutants were produced, studied and three were more useful as biotools. O. tritici wild type and the Acr3-mutants showed the highest resistance to As(III), being able to grow up to 50 mM of arsenite. On the other hand, arsB-mutants were not able to grow at concentrations higher than 1 mM As(III), and were the most As(III) sensitive mutants. In the presence of 1 mM As(III), the strain with arsB and Acr3_1 mutated showed the highest intracellular arsenic concentration (up to 17 ng(As)/mg protein), while in assays with 5 mM As(III), the single arsB-mutant was able to accumulate the highest concentration of arsenic (up to 10 ng(As)/mg protein). Therefore, arsB is the main gene responsible for arsenite resistance in O. tritici. However, both genes arsB and Acr3_1 play a crucial role in the resistance mechanism, depending on the arsenite concentration in the medium. In conclusion, at moderate arsenite concentrations, the double arsB- and Acr3_1-mutant exhibited a great ability to accumulate arsenite and can be seen as a promising bioremediation tool for environmental arsenic detoxification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.

Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the externa...

متن کامل

Knocking Out ACR2 Does Not Affect Arsenic Redox Status in Arabidopsis thaliana: Implications for As Detoxification and Accumulation in Plants

Many plant species are able to reduce arsenate to arsenite efficiently, which is an important step allowing detoxification of As through either efflux of arsenite or complexation with thiol compounds. It has been suggested that this reduction is catalyzed by ACR2, a plant homologue of the yeast arsenate reductase ScACR2. Silencing of AtACR2 was reported to result in As hyperaccumulation in the ...

متن کامل

Detection of DNA Gyrase Mutation and Multidrug Efflux Pumps Hyperactivity in Ciprofloxacin Resistant Clinical Isolates of Pseudomonas aeruginosa

  Target modification and reduced drug accumulation are the main resistance mechanisms against fluoroquinolone antibiotics in Pseudomonas aeruginosa. We performed a genotypic characterization of three major Mex multidrug efflux pumps (MexAB-OprM, MexXY-OprM and MexCD-OprJ) in ciprofloxacin resistant clinical isolates of P. aeru­ginosa, collected from Tehran, Iran this was followed by sequencin...

متن کامل

High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata.

Arsenite (AsIII) efflux is an important mechanism for arsenic (As) detoxification in plants. Low AsIII efflux has been observed in As-hyperaccumulator Pteris vittata, which may contribute to its highly efficient As translocation and accumulation; however, the results may be compromised by microbial AsIII oxidation, relatively low As concentration in the medium and short-term As exposure. Here, ...

متن کامل

Effect of the ARG1 gene on arsenic resistance of 293T cells.

To study the relationship between arsenic resistance of 293T cells and overexpression of ARG1, the ARG1 gene in a recombinant plasmid was transfected into 293T cells via liposomes, and then ARG1 overexpression was examined by real-time PCR and immunocytochemistry. The survival rate, arsenic accumulation and arsenic efflux, GSH level, and GST activity of 293T cells overexpressing ARG1 were assay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015